Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1444, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365897

RESUMO

Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.


Assuntos
Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Transdutores , Desenho de Equipamento , Ultrassonografia , Impedância Elétrica
2.
Photoacoustics ; 30: 100485, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082618

RESUMO

Postprandial hyperglycemia, blood glucose spikes, induces endothelial dysfunction, increasing cardiovascular risks. Endothelial dysfunction leads to vasoconstriction, and observation of this phenomenon is important for understanding acute hyperglycemia. However, high-resolution imaging of microvessels during acute hyperglycemia has not been fully developed. Here, we demonstrate that photoacoustic microscopy can noninvasively monitor morphological changes in blood vessels of live animals' extremities when blood glucose rises rapidly. As blood glucose level rose from 100 to 400 mg/dL following intraperitoneal glucose injection, heart/breath rate, and body temperature remained constant, but arterioles constricted by approximately -5.7 ± 1.1% within 20 min, and gradually recovered for another 40 min. In contrast, venular diameters remained within about 0.6 ± 1.5% during arteriolar constriction. Our results experimentally and statistically demonstrate that acute hyperglycemia produces transitory vasoconstriction in arterioles, with an opposite trend of change in blood glucose. These findings could help understanding vascular glucose homeostasis and the relationship between diabetes and cardiovascular diseases.

3.
J Biomed Opt ; 28(8): 082805, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36844430

RESUMO

Significance: Corticosteroids-commonly prescribed medications for skin diseases-inhibit the secretion of vasodilators, such as prostaglandin, thereby exerting anti-inflammatory action by constricting capillaries in the dermis. The effectiveness of corticosteroids is determined by the degree of vasoconstriction followed by skin whitening, namely, the blanching effect. However, the current method of observing the blanching effect indirectly evaluates the effects of corticosteroids. Aim: In this study, we employed optical-resolution photoacoustic (PA) microscopy (OR-PAM) to directly visualize the blood vessels and quantitatively evaluate vasoconstriction. Approach: Using OR-PAM, the vascular density in mice skin was monitored for 60 min after performing each experimental procedure for four groups, and the vasoconstriction was quantified. Volumetric PA data were segmented into the papillary dermis, reticular dermis, and hypodermis based on the vascular characteristics obtained through OR-PAM. The vasoconstrictive effect of each skin layer was quantified according to the dermatological treatment method. Results: In the case of corticosteroid topical application, vasoconstriction was observed in the papillary ( 56.4 ± 10.9 % ) and reticular ( 45.1 ± 4.71 % ) dermis. For corticosteroid subcutaneous injection, constriction was observed solely in the reticular ( 49.5 ± 9.35 % ) dermis. In contrast, no vasoconstrictions were observed with nonsteroidal topical application. Conclusions: Our results indicate that OR-PAM can quantitatively monitor the vasoconstriction induced by corticosteroids, thereby validating OR-PAMs potential as a practical evaluation tool for predicting the effectiveness of corticosteroids in dermatology.


Assuntos
Anti-Inflamatórios , Técnicas Fotoacústicas , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Pele/irrigação sanguínea , Corticosteroides/farmacologia , Vasoconstrição , Análise Espectral , Técnicas Fotoacústicas/métodos
4.
Opt Lett ; 48(2): 343-346, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638453

RESUMO

Two-dimensional matrix transducer arrays are the most appropriate imaging probes for acquiring dual-modal 3D photoacoustic (PA)/ultrasound (US) images. However, they have small footprints which limit the field-of-view (FOV) to less than 10 mm × 10 mm and degrade the spatial resolution. In this study, we demonstrate a dual-modal PA and US imaging system (using a 2D matrix transducer array and a motorized 2D scanning system) to enlarge the FOV of volumetric images. Multiple PA volumes were merged to form a wide-field image of approximately 45 mm × 45 mm. In vivo imaging was demonstrated using rat sentinel lymph nodes (SLNs) and bladders stained with methylene blue. We believe that this volumetric PA/US imaging technique with a 2D matrix transducer array can be a useful tool for narrow-field real-time monitoring and wide-field imaging of various preclinical and clinical studies.


Assuntos
Imageamento Tridimensional , Técnicas Fotoacústicas , Ratos , Animais , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Azul de Metileno , Transdutores , Técnicas Fotoacústicas/métodos
5.
Biomed Opt Express ; 13(9): 4684-4692, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36187254

RESUMO

Mobile and wearable healthcare electronics are widely used for measuring bio-signals using various fusion sensors that employ photoplethysmograms, cameras, microphones, ultrasound (US) sensors, and accelerometers. However, the consumer demand for small form factors has significantly increased as the integration of multiple sensors is difficult in small mobile or wearable devices. This study proposes two novel opto-US sensors, namely (1) a wearable photoplethysmography (PPG)-US device and (2) a PPG sensor built-in mobile smartphone with a US sensor, seamlessly integrated using a transparent ultrasound transducer (TUT). The TUT exhibits a center frequency of 6 MHz with a 50% bandwidth and 82% optical transparency in visible and near-infrared regions. We developed an integrated wearable PPG-US device to demonstrate its feasibility and coupled the TUT sensor with a smartphone. We measured the heart rates optically and acoustically in human subjects and quantified the oxygen saturation optically by passing light through the TUT. The proposed proof-of-concept is a novel sensor fusion for mobile and wearable devices that require a small form factor and aim to improve digital healthcare. The results of this study can form the basis for innovative developments in sensor-based high-tech industrial applications, such as automobiles, robots, and drones, in addition to healthcare applications.

6.
Photoacoustics ; 27: 100374, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35646590

RESUMO

Photoacoustic microscopy (PAM) is used to visualize blood vessels and to monitor their time-dependent changes. Photoplethysmography (PPG) measures hemodynamic time-series changes such as heart rate. However, PPG's limited visual access to the dynamic changes of blood vessels has prohibited further understanding of hemodynamics. Here, we propose a novel, fully integrated PAM and photoplethysmography (PAM-PPG) system to understand hemodynamic features in detail. Using the PAM-PPG system, we simultaneously acquire vascular images (by PAM) and changes in the blood volume (by PPG) from human fingers. Next, we determine the heart rate from changes in the PA signals, which match well with the PPG signals. These changes can be measured if the blood flow is not blocked. From the results, we believe that PAM-PPG could be a useful clinical tool in various clinical fields such as cardiology and endocrinology.

7.
Sci Rep ; 12(1): 9221, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654947

RESUMO

Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.


Assuntos
Sistemas Microeletromecânicos , Técnicas Fotoacústicas , Capilares , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Análise Espectral
8.
Biomed Eng Lett ; 12(2): 147-153, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35529340

RESUMO

Photoacoustic microscopy (PAM) embedded with a 532 nm pulse laser is widely used to visualize the microvascular structures in both small animals and humans in vivo. An opto-ultrasound combiner (OUC) is often utilized in high-speed PAM to confocally align the optical and acoustic beams to improve the system's sensitivity. However, acoustic impedance mismatch in the OUC results in little improvement in the sensitivity. Alternatively, a ring-shaped ultrasound transducer (RUT) can also accomplish the confocal configuration. Here, we compare the performance of OUC and RUT modules through ultrasound pulse-echo tests and PA imaging experiments. The signal-to-noise ratios (SNRs) of the RUT-based system were 15 dB, 12 dB, and 7 dB higher when compared to the OUC-based system for ultrasound pulse-echo test, PA phantom imaging test, and PA in-vivo imaging test, respectively. In addition, the RUT-based system could image the microvascular structures of small parts of a mouse body in a few seconds with minimal loss in SNR. Thus, with increased sensitivity, improved image details, and fast image acquisition, we believe the RUT-based systems could play a significant role in the design of future fast-PAM systems.

10.
Radiology ; 303(2): 467-473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35191741

RESUMO

Background Monitoring the microcirculation in human feet is crucial in assessing peripheral vascular diseases, such as diabetic foot. However, conventional imaging modalities are more focused on diagnosis in major arteries, and there are limited methods to provide microvascular information in early stages of the disease. Purpose To investigate a three-dimensional (3D) noncontrast bimodal photoacoustic (PA)/US imaging system that visualizes the human foot morphologically and also reliably quantifies podiatric vascular parameters noninvasively. Materials and Methods A clinically relevant PA/US imaging system was combined with a foot scanner to obtain 3D PA and US images of the human foot in vivo. Healthy participants were recruited from September 2020 to June 2021. The collected 3D PA and US images were postprocessed to present structural information about the foot. The quantitative reliability was evaluated in five repeated scans of 10 healthy feet by calculating the intraclass correlation coefficient and minimal detectable change, and the detectability of microvascular changes was tested by imaging 10 healthy feet intentionally occluded with use of a pressure cuff (160 mm Hg). Statistically significant difference is indicated with P values. Results Ten feet from six healthy male volunteers (mean age ± standard deviation, 27 years ± 3) were included. The foot images clearly visualized the structure of the vasculature, bones, and skin and provided such functional information as the total hemoglobin concentration (HbT), hemoglobin oxygen saturation (SO2), vessel density, and vessel depth. Functional information from five independent measurements of 10 healthy feet was moderately reliable (intraclass correlation coefficient, 0.51-0.74). Significant improvements in HbT (P = .006) and vessel density (P = .046) as well as the retention of SO2 were observed, which accurately described the microvascular change due to venous occlusion. Conclusion Three-dimensional photoacoustic and US imaging was able to visualize morphologic and physiologic features of the human foot, including the peripheral microvasculature, in healthy volunteers. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Mezrich in this issue.


Assuntos
Imageamento Tridimensional , Extremidade Inferior , Adulto , Hemoglobinas , Humanos , Imageamento Tridimensional/métodos , Masculino , Microvasos , Reprodutibilidade dos Testes , Adulto Jovem
11.
Opt Lett ; 47(2): 393-396, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030614

RESUMO

Sentinel lymph node biopsy with an indocyanine green-based near-infrared fluorescence imaging system avoids the shortcomings of using a radioisotope or a combination of a blue dye and a radioactive tracer. To improve surgical precision, recent research has provided a depth profile of the sentinel lymph node by fusing fluorescence and ultrasound imaging. Here, we present a combined near-infrared fluorescence and ultrasound imaging system based on a transparent ultrasound transducer. The transparent ultrasound transducer enables seamless coaxial alignment of the fluorescence and ultrasound beam paths, allowing bi-modal observation of a single region of interest. Further, we demonstrate that the sentinel lymph node of mice injected with indocyanine green can be successfully localized and dissected based on information from the bi-modal imaging system.


Assuntos
Linfonodo Sentinela , Animais , Corantes , Fluorescência , Verde de Indocianina , Linfonodos/diagnóstico por imagem , Camundongos , Imagem Óptica , Linfonodo Sentinela/diagnóstico por imagem , Biópsia de Linfonodo Sentinela , Transdutores , Ultrassonografia
12.
Biomed Opt Express ; 12(11): 6717-6729, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858676

RESUMO

Photoacoustic (PA) imaging has become invaluable in preclinical and clinical research. Endoscopic PA imaging in particular has been explored as a noninvasive imaging modality to view vasculature and diagnose cancers in the digestive system. However, these feasibility studies are still limited to rodents or rabbits. Here, we develop a fully synchronized simultaneous ultrasound and photoacoustic microscopy system using two spectral bands (i.e., the visible and near-infrared) in both optical- and acoustic-resolution modes. We investigate the feasibility of imaging gastric vasculature in an ex vivo porcine model. The entire gastric wall, including the mucosa, submucosa, muscularis propria, and serosa, was excised from fresh porcine stomachs immediately followed by ultrasound and PA imaging being performed within a few hours of sacrifice. PA images of the mucosal vasculature were obtained at depths of 1.90 mm, which is a clinically significant accomplishment considering that the average thickness of the human mucosa is 1.26 mm. The layer structure of the stomach wall could be clearly distinguished in the overlaid PA and US images. Because gastric cancer starts from the mucosal surface and infiltrates into the submucosa, PA imaging can cover a clinically relevant depth in early gastric cancer diagnosis. We were able to detect mucosal vasculature in the entire mucosal layer, suggesting the potential utility of combined PA/US imaging in gastroenterology.

13.
Sci Rep ; 11(1): 20416, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650165

RESUMO

With the increasing need for steel sheet quality assurance, the detection of micro-scaled inclusions in steel sheets has become critical. Many techniques have been explored to detect inclusions, e.g., visual inspection, radiography, magnetic testing, and ultrasound. Among these methods, ultrasound (US) is the most commonly used non-destructive testing (NDT) method due to its ease of use and deep penetration depth. However, ultrasound currently cannot be used for detecting the micro-scaled inclusions due to low spatial resolution, e.g., less than 30 µm, which are the key important factors causing the cracks in the high-quality steel sheets. Here, we demonstrate a high-resolution US imaging (USI) using high-frequency US transducers to image micro inclusions in steel sheets. Our system utilizes through-transmission USI and identifies ultrasound scattering produced by the inclusions. We first ultrasonically imaged the artificial flaws induced by the laser on the steel sheet surface for validating the system. We then imaged the real inclusions in the steel sheets formed during manufacturing processes and analyzed them to derive quantitative parameters related to the number of micro-scaled inclusions. Our results confirm that inclusions less than 30 µm can be identified using our high-resolution USI modality and has the potential to be used as an effective tool for quality assurance of the steel sheets.

14.
Photoacoustics ; 23: 100282, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258222

RESUMO

Functional imaging of microvascular dynamics in extremities delivers intuitive information for early detection, diagnosis, and prognosis of vascular diseases. High-resolution and high-speed photoacoustic microscopy (PAM) visualizes and measures multiparametric information of microvessel networks in vivo such as morphology, flow, oxygen saturation, and metabolic rate. Here, we demonstrate high-resolution photoacoustic monitoring of vascular dynamics in human fingers. We photoacoustically monitored the position displacement of blood vessels associated with arterial pulsation in human fingers. Then, during and after arterial occlusion, we photoacoustically quantified oxygen consumption and blood perfusion in the fingertips. The results demonstrate that high-resolution functional PAM could be a vital tool in peripheral vascular examination for measuring heart rate, oxygen consumption, and/or blood perfusion.

15.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836558

RESUMO

Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.

16.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630827

RESUMO

Photoacoustic imaging (PAI) is being actively investigated as a non-invasive and non-radioactive imaging technique for sentinel lymph node (SLN) biopsy. By taking advantage of optical and ultrasound imaging, PAI probes SLNs non-invasively with methylene blue (MB) in both live animals and breast cancer patients. However, these PAI systems have limitations for widespread use in clinics and commercial marketplaces because the lasers used by the PAI systems, e.g., tunable liquid dye laser systems and optical parametric oscillator (OPO) lasers, are bulky in size, not economical, and use risky flammable and toxic liquid dyes. To overcome these limitations, we are proposing a novel dual-modal photoacoustic and ultrasound imaging system based on a solid-state dye laser (SD-PAUSI), which is compact, convenient, and carries far less risk of flammability and toxicity. Using a solid-state dye handpiece that generates 650-nm wavelength, we successfully imaged the MB tube positioned deeply (~3.9 cm) in chicken breast tissue. The SLNs were also photoacoustically detected in the in vivo rats beneath a 2.2-cm-thick layer of chicken breast, which is deeper than the typical depth of SLNs in humans (1.2 ± 0.5 cm). Furthermore, we showed the multispectral capability of the PAI by switching the dye handpiece, in which the MB-dyed SLN was selectively highlighted from the surrounding vasculature. These results demonstrated the great potential of the SD-PAUSI as an easy but effective modality for SLN detection.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Lasers de Corante , Linfonodo Sentinela , Animais , Corantes , Feminino , Humanos , Ratos , Linfonodo Sentinela/diagnóstico por imagem , Ultrassonografia
17.
J Assoc Res Otolaryngol ; 20(4): 313-339, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165284

RESUMO

To better understand the spread of prosthetic current in the inner ear and to facilitate design of electrode arrays and stimulation protocols for a vestibular implant system intended to restore sensation after loss of vestibular hair cell function, we created a model of the primate labyrinth. Because the geometry of the implanted ear is complex, accurately modeling effects of prosthetic stimuli on vestibular afferent activity required a detailed representation of labyrinthine anatomy. Model geometry was therefore generated from three-dimensional (3D) reconstructions of a normal rhesus temporal bone imaged using micro-MRI and micro-CT. For systematically varied combinations of active and return electrode location, the extracellular potential field during a biphasic current pulse was computed using finite element methods. Potential field values served as inputs to stochastic, nonlinear dynamic models for each of 2415 vestibular afferent axons, each with unique origin on the neuroepithelium and spiking dynamics based on a modified Smith and Goldberg model. We tested the model by comparing predicted and actual 3D vestibulo-ocular reflex (VOR) responses for eye rotation elicited by prosthetic stimuli. The model was individualized for each implanted animal by placing model electrodes in the standard labyrinth geometry based on CT localization of actual implanted electrodes. Eye rotation 3D axes were predicted from relative proportions of model axons excited within each of the three ampullary nerves, and predictions were compared to archival eye movement response data measured in three alert rhesus monkeys using 3D scleral coil oculography. Multiple empirically observed features emerged as properties of the model, including effects of changing active and return electrode position. The model predicts improved prosthesis performance when the reference electrode is in the labyrinth's common crus (CC) rather than outside the temporal bone, especially if the reference electrode is inserted nearly to the junction of the CC with the vestibule. Extension of the model to human anatomy should facilitate optimal design of electrode arrays for clinical application.


Assuntos
Orelha Interna/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Macaca mulatta/fisiologia , Modelos Teóricos , Animais , Orelha Interna/cirurgia , Feminino , Macaca mulatta/cirurgia , Masculino
18.
J Biophotonics ; 12(2): e201800215, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30084200

RESUMO

We have developed a reflection-mode switchable subwavelength Bessel-beam (BB) and Gaussian-beam (GB) photoacoustic microscopy (PAM) system. To achieve both reflection-mode and high resolution, we tightly attached a very small ultrasound transducer to an optical objective lens with numerical aperture of 1.0 and working distance of 2.5 mm. We used axicon and an achromatic doublet in our system to obtain the extended depth of field (DOF) of the BB. To compare the DOF performance achieved with our BB-PAM system against GB-PAM system, we designed our system so that the GB can be easily generated by simply removing the lenses. Using a 532 nm pulse laser, we achieved the lateral resolutions of 300 and 270 nm for BB-PAM and GB-PAM, respectively. The measured DOF of BB-PAM was approximately 229 µm, which was about 7× better than that of GB-PAM. We imaged the vasculature of a mouse ear using BB-PAM and GB-PAM and confirmed that the DOF of BB-PAM is much better than the DOF of GB-PAM. Thus, we believe that the high resolution achieved at the extended DOF by our system is very practical for wide range of biomedical research including red blood cell (RBC) migration in blood vessels at various depths and observation of cell migration or cell culture.


Assuntos
Microscopia/métodos , Fenômenos Ópticos , Técnicas Fotoacústicas/métodos , Animais , Orelha/diagnóstico por imagem , Desenho de Equipamento , Estudos de Viabilidade , Camundongos , Microscopia/instrumentação , Distribuição Normal , Técnicas Fotoacústicas/instrumentação
19.
Sensors (Basel) ; 18(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355999

RESUMO

Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world's deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient's risk level. Lipid content is an important determinant of plaque stability. However, conventional intravascular imaging methods have limitations in finding lipids. Therefore, new intravascular imaging techniques for plaque risk assessment are urgently needed. In this study, a novel photothermal strain imaging (pTSI) was applied to an intravascular imaging system for detecting lipids in plaques. As a combination of thermal strain imaging and laser-induced heating, pTSI differentiates lipids from other tissues based on changes in ultrasound (US) velocity with temperature change. We designed an optical pathway to an intravascular ultrasound catheter to deliver 1210-nm laser and US simultaneously. To establish the feasibility of the intravascular pTSI system, we experimented with a tissue-mimicking phantom made of fat and gelatin. Due to the difference in the strain during laser heating, we can clearly distinguish fat and gelatin in the phantom. The result demonstrates that pTSI could be used with conventional intravascular imaging methods to detect the plaque lipid.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Lipídeos/análise , Humanos , Imagens de Fantasmas , Placa Aterosclerótica/diagnóstico por imagem , Ultrassonografia , Ultrassonografia de Intervenção
20.
J Biomed Opt ; 22(7): 76005, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28697232

RESUMO

Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.


Assuntos
Vasos Coronários/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Temperatura , Ultrassonografia , Algoritmos , Animais , Imagens de Fantasmas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...